

Digitisation: Revolution, Evolution or Hype?
An outlook on digitisation in rail freight transport.


The railway

... on track to Industry 4.0

Rail freight transport

... on track to Industry 4.0

Source: Mercedes-Benz Uptime

Rail freight transport

... on track to Industry 4.0

Where are we today:

This is how much a wagon owner knows about his wagon during the operation ...

Thus we require a comprehensive maintenance system

... with wide-ranging safety

... where many safety margins are to be considered, there are also inefficiencies.

01.07.2012

01.03.2014

01.02.2008

01.03.2015

01 03 2010

20.02.2016

01.07.2015

VPI 04 VPI 05

VPI 06A

VPI 07

Federn
Zugeinrichtungen

Stoßeinrichtungen

Flektronischer Datenaustausch

Zerstörungsfreie Prüfung

3. Ausgabe

3. Ausgabe

2. Ausgabe

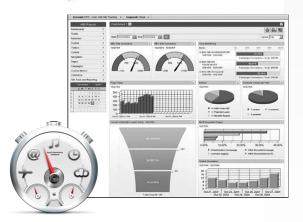
3. Ausgabe

Update 2.3

Undate 3.1

Update 3.1

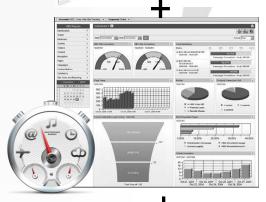
Rail freight transport


... on track to Industry 4.0

Product

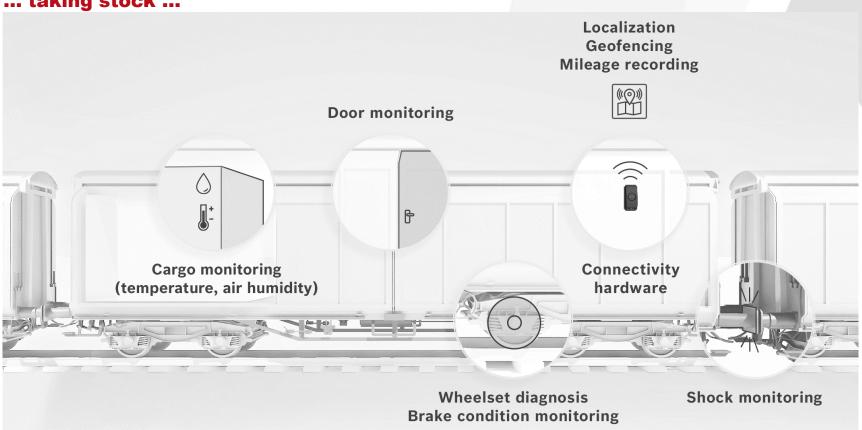
Smart Product

One of the basic ideas of Industry 4.0 is to fit the products out with embedded systems that are able to gather data,...


Smart Connected Product

...to communicate and to network..

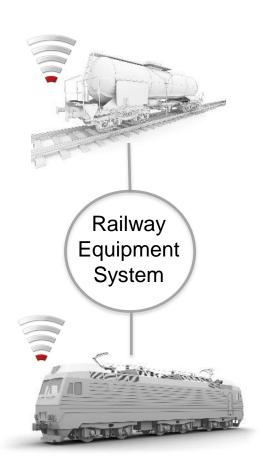
- GPS
- shock/impact
- temperature

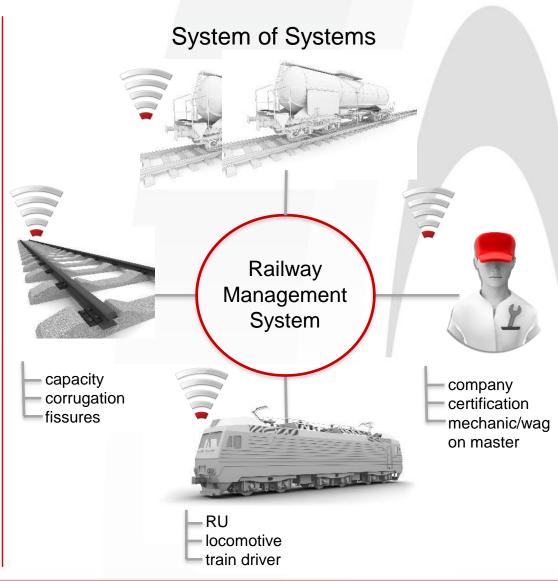


So-called asset intelligence is to help, render the system more efficient

... taking stock ...

... asset monitoring geared to the needs of logistics!


... maintenance was not much in the focus thus far!


Rail freight transport

... on track to Industry 4.0

Product System

Retrofitting of sensors

... no easy task!

Bild: VTG Rail Europe GmbH

Limiting factors

- Lack of power on the wagon for comprehensive monitoring tools.
- Lack of user models or evidence: "It all works fine the way it is!"
- Lack of imagination: "What use is Big Data to my company?"
- Discouraging cost, especially with regard to the existing fleet?
- Theft

Deductions from the route profile for the maintenance requirements is not bad!

...but I still don't know the exact wear and tear...

Source: http://europetrain.uic.org

Manual trending

... takes a lot of effort

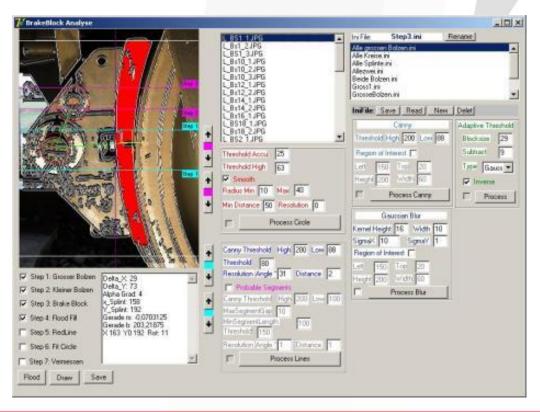
Using the example of brake blocks

Point of departure	Destination	Avg. wear of the brake blocks	Avg. mileage	Avg. wear per 1,000km
A	В	20mm	28,000 km	0.714mm
A	С	23mm	31,000 km	0.741mm
A	D	7mm	12,000 km	0.583mm
F	В	20mm	44,000 km	0.452mm
		on average	28,750 km	0.623mm

Source: VTG Rail Europe GmbH

... There is the wish to know more and in a simpler way about the wear and tear of the relevant components.

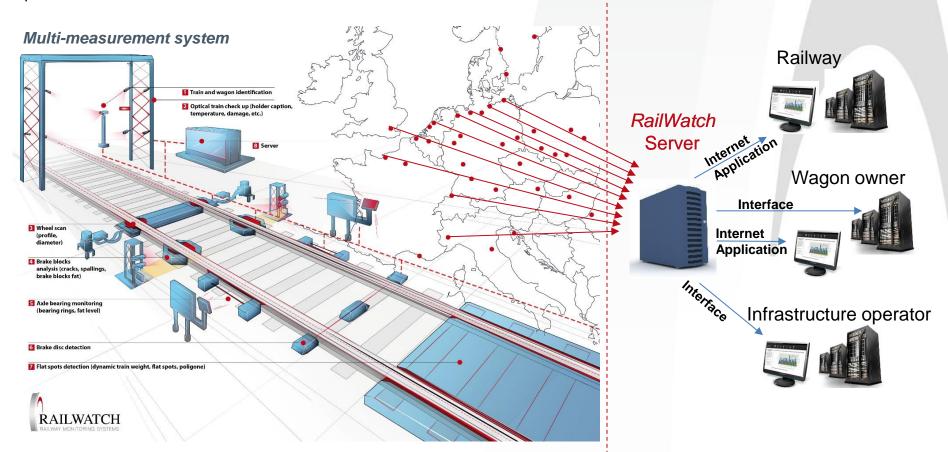
The solution


... intelligent registering of critical components on rail freight wagons

...using the example of brake blocks:

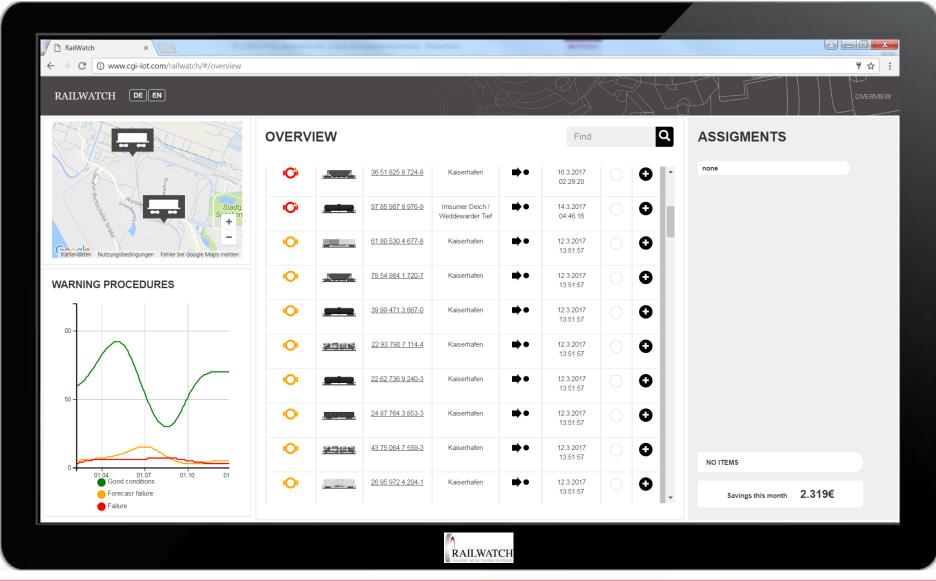
- Upon passing, the camera registers the wagon number or QR code with the wagon identification
- Upon passing, the camera takes photos of the brake blocks per wheel and identifies the best photo using a set of characteristics.
- Subsequently, the brake block is assessed using area integrals and irregularities of the surface.

RailWatch


A system for the automatic vehicle diagnosis of freight wagons Train and wagon identification 2 Optical train check up (holder caption, temperature, damage, etc.) 8 Server **3** Wheel scan (profile, diameter) Brake blocks analysis (cracks, spallings, brake blocks fat) 5 Axle bearing monitoring (bearing rings, fat level) 6 Brake disc detection Flat spots detection (dynamic train weight, flat spots, poligone) **RAILWATCH**

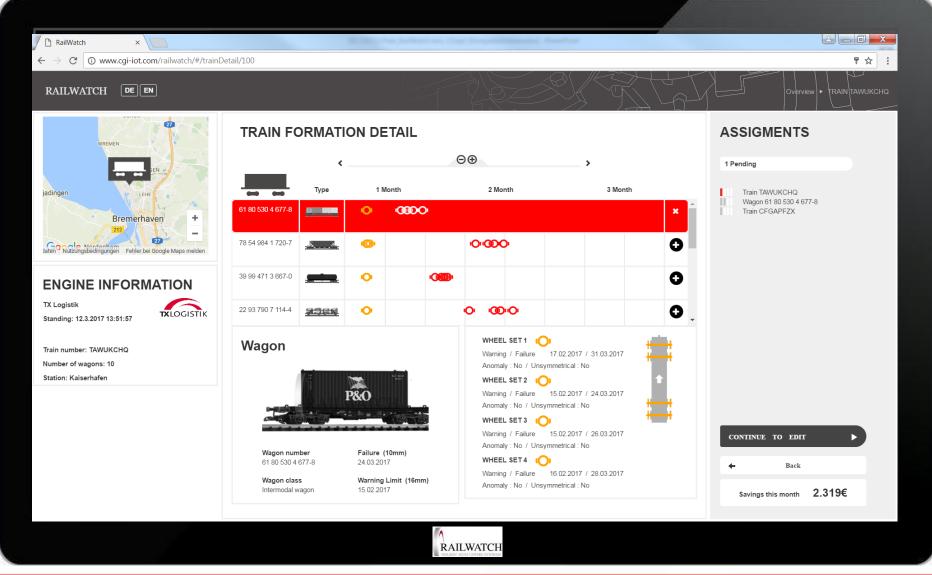
The service

Registering the condition of the components upon the passage of the train. Processing of the information at the local server stations and transmission of the required (determined by customer) limiting measures and damage with a photo to the *RailWatch* server.


Processing of the information from the server station and transmission (interface) to the customer or storage in a web application.

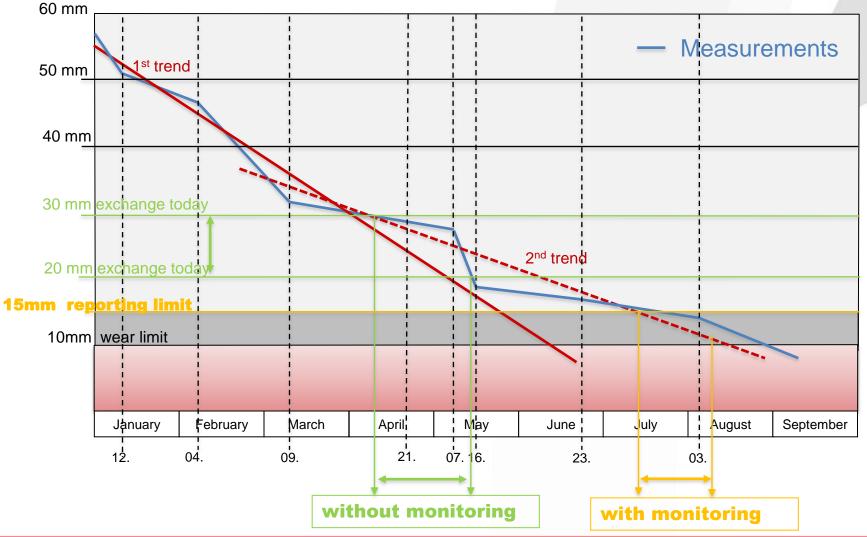
The Internet

for wagon owners



The Internet

for wagon owners



The significant added value

.... the wear trend analysis of RailWatch

Explained using the wear trend example of a 60mm plastic brake block

The data model ... the 3 product groups (excerpt)

Freight wagon owners

Maintenance according to condition

Informationsdienst Güterwagenhalter - Änderungen vorbel

Gruppe	Code	Infromationstyp	Inhalt	Maß/Format
Radreifen/Vollrad		Flachstellen	Länge, links/rechts	mm
		Polygone	Unrundheit, links/rechts	mm
		Radprofil	Spurmaß (SR)	mm
		Radprofil	Abstand der inneren Stirnfläche (AR)	mm
		Radprofil	Radreifen-/Radkranzbreite (BR), links/r	mm
		Radprofil	Spurkranzdicke (Sd), links/rechts	mm
		Radprofil	Spurkranzhöhe (Sh), links/rechts	mm
		Radprofil	Dicke des Radreifens in Meßkreiseben-	mm
		Radprofil	Spurkranzflankenmaß (gR), links/rechts	mm
		Radprofil	Hohlauf, links/rechts	mm
		Raddurchmesser	Durchmesser, links/rechts	mm
Bremssohlen		Bremssohlen	Breite oben	mm
		Bremssohlen	Breite mitte	mm
		Bremssohlen	Breite unten	mm
		Bremssohlen	Ausbröckelung	mm²
		Bremssohlen	Risse	mm²
		Bremssohlen	Foto	jpg./tif.
Achs lager		Achslager	Annomlie Lagerringe (potenzieller Defel	Ja/Nein
		Achslager	Fettfüllstand zu hoch	Ja/Nein
		Achslager	Fettfüllstand zu niedrig	Ja/Nein
W agenbeschriftu	ng	fehlen, nicht lesba		Ja, jpg./tif.
		fehlen, nicht lesba	Zeichen "RIV" oder ein Zeichen der Zul	Ja. ioc./tif.

incl. GPS for maintenance

WagonScan

...per component on wagon

...as monthly flat fee

Railway undertakings

Time saving in train dispatching

AVV Produkte - Änderungen vorbehalten -

Bauteile	Code		Mängel/Kriterium/Hinweise	Bemerkung
1.1. Radreifer	1.1.1		Dicke weniger als, für 120km/h zugelassen Wagen (Wager	die das Zeich
	1.1.1		Dicke weniger als, überige Wagen 30mm	
	1.1.2		Radreifen, gebrochen	Verifizierung
	1.1.3	ļ	Radreifen lose, unreiner Klang	Verifizierung
	1.1.5	ļ	Radreifen seitliche verschoben, Sprengring lose oder sichb	Verifizierung
	1.1.6		Schaden am Sprengring (gerissen / gebrochen / fehlt)	Verifizierung
1.2. Volhad	1.2.1	ļ	Die Rille zur Kennzeichnung der Mindestdicke ist nicht meh	r über ihren g
	1.2.2	ļ	Thermische Überbeanspruchung durch die Bremse, Anges	chmolzene Bre
	1.2.3	ļ	Thermische Überbeanspruchung durch die Bremse, Besch	idigung der L
	1.2.2.1		Anges chmolzende Brems sohlen oder Beschädigung der La	uffläche mit M
	1.2.2.2		Angeschmolzende Bremssohlen oder Beschädigung der La	Verifizierung
1.3 Radreifen	1.3.1.1	ļ	Breite B >139 mm und ≤ 140 mm	<u> </u>
	1.3.1.2		Breite B > 140 mm, < 133 mm bei Vorhandensein einer Über	walzung S
	1.3.2		Lauffläche stellenweise eingedrückt, ungleichmäßige Konts	ktflächen ode
	1.3.3.1	ļ	Flachstellen Rad -Ø ≥ 630 mm und Flachstellen mit einer L	inge von > 60
	1.3.3.2		Flachstellen Rad -Ø < 630 mm und Flachstellen mit einer L	änge von > 30
	1.3.4.1		Rad Ø≥ 630 mm und Materialauftragungen mit einer Länge	von > 60 mm
	1.3.4.2		Rad Ø≥ 630 mm und Materialauflagerungen mit einer Läng	e von > 10mm
	1.3.4.3		Rad Ø≥ 630 mm und Materialauftragungen mit einer Länge	von > 30 mm
	1.3.4.4	ļ	Rad Ø≥ 630 mm und Materialauftragungen mit einer Länge	von > 10 mm
	1.3.4.5		Löcher, Ausbröckelungen oder Abblätterungen an der Lauft	läche mit eine
1.4 Spurkranz			Spurkranzhöhe Shigrößer als 36 mm, Lauffläche des Rade	
	1.4.2		Dicke des Spurkranzes Sd, Rad-Ø≥840 mm Sd < 22 mm,	Verifizierung

Railway infrastructure companies

Increasing safety & productivity, remuneration system

Informationsdienst Güterwagenhalter - Änderungen vorbel

Gruppe	Code	Infromationstyp	Inhalt	Maß/Format
Nebenprodukte		Wagengewicht	Gewicht	kg
Nebenprodukte		Wagennummer	UIC Wagennummer	UIC Wagenr
Nebenprodukte		Wagenlänge	Länge	m
Nebenprodukte		Ladungsnummer	Consinernummer(n)	Containernu
Nebenprodukte		Lärm	Lärmemmission (interpoliert)	dB(A)
Nebenprodukte		Bremssohle	K-Sohle / Grauguss- Sohle	K/G

via mobile data transmission

TrainScan

... per train passage (flexible booking)

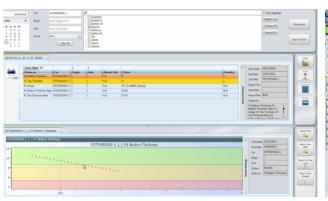
... as individual price or flat rate

Terminal-RailGate

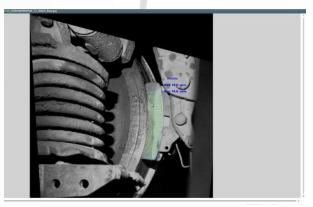
... 100% registration

... 99% availability

... rental or purchase


Advantages





... reducing the maintenance cost & increasing the availability

- Avoiding additional cost through a preventative maintenance management.
 No reaction but taking proactive action.
- Thus, avoiding unplanned wagon downtimes and augmenting the availability. There is an
 increase in productivity with a simultaneous reduction in the number of required wagons.
- Evidence pursuant to GCU on operational defects or quality defects may be provided for the RUs, freight wagon workshops and component manufacturers.
- Cost saving through extension of the maintenance cycles (Life Cycle) on the basis of operational live data, which may be stochastically condensed.
- New version or further development of the maintenance manual is possible. Know-how advantage
 for the design of freight wagons, improved components.

Advantages

RAILWATCH RAILWAY MONITORING SYSTEMS

for the terminal and railway undertakings

... more safety on the infrastructure & increase of productivity

- Identification of wagons that are unfit for operation to avoid accidents and disruption of production on the rail infrastructure.
- Higher productivity of the rail infrastructure
 - through simplification of the technical inspection of the wagon before the train's departure, operational set of rules, e.g. General Contract of Use for Wagons (GCU).
 - Through early recognition of defects and identifying freight wagons unfit for operation before loading/renewed loading
- Identification of wagons with wheel flats that cause damage to the rail surface, possibly holding liable the party at fault or levying a user charge dependent on the wear (pricing system).
- Check with regard to the correct levying of the user charge, depending on the design of the remuneration system (wagon weight, wheel flats, etc.)

One possibility

... towards digitisation

... evolution instead of revolution

certification

/wagon master

mechanic

RAILWATCH

-Labelling missing, illegible

-Graffiti

- -Temperature
- -Deformations
- -Brake blocks
- -Wheel profiles & diameter
- -Axle bearing rings
- -Lubricant filling level
- -Wheel flats, polygons
- -Chipping
- -Burrs
- -Wagon weight, etc.

RailWatch
Device Cloud

3rd Party
Device Clouds

Railway Management System

powered by RailWatch

C. TOLENIA

capacitycorrugationfissures

RU

Locomotive

train driver

-pantograph

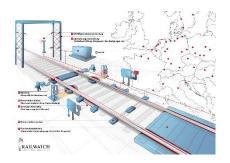
Advantages

for the entire railway market

RAILWATCH
RAILWAY MONITORING SYSTEMS

- ... networking of the freight wagons among one another
- ... let machines talk

Automatic analysis of the cause (automatic vehicle diagnosis) with regard to


- technical vehicular problems (e.g. axle bearings)
- rail operational problems (e.g. chipping)
- infrastructural problems (e.g. polygons)

Recommendations for action

Fleet manager

...deals with the root cause of the problem.

Moving away from problem fixing towards problem solving.

Thank you very much!