

More railway for the money Through data-driven life cycle management

23.11.2016

Presented at Intelligent Rail Summit 2016 by Peter Juel Jensen (pjej@bane.dk)

banedanmark

Here is a railway line. It looks good, but up closer...

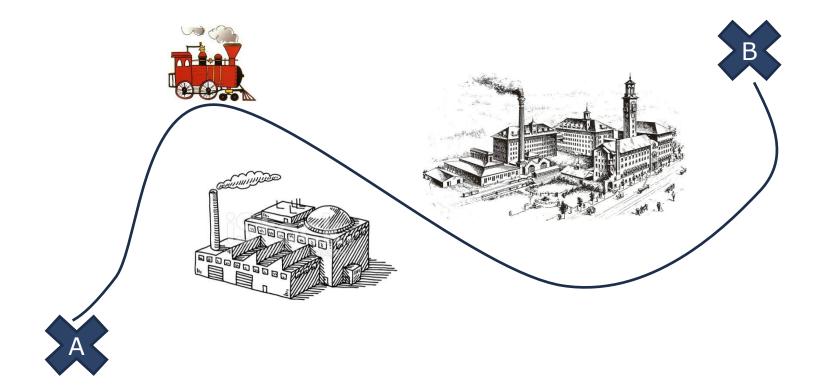
...in another perspective, we can see there is a problem. - Let's take a closer look together...

Introduction

What this presentation is about

- How Rail Net Denmark uses linear asset management software, that combines master data and measurement data in a linear environment, to make smarter life cycle management
- Specifically by identifying problem and solution for the shown track
- I'll show you how we have done it, by telling you:
 - What linear assets are
 - How data is presented as linear data
 - An example of using integrated data sources to smarter LCM:
 Strategic renewal planning with ground penetrating radar
 - GPR is more accurate than mathematical models based on track geometry and probably 90% cheaper than conventional drilling on €/km
- Maybe you can use it in your country
- Maybe we can work together on making it even better

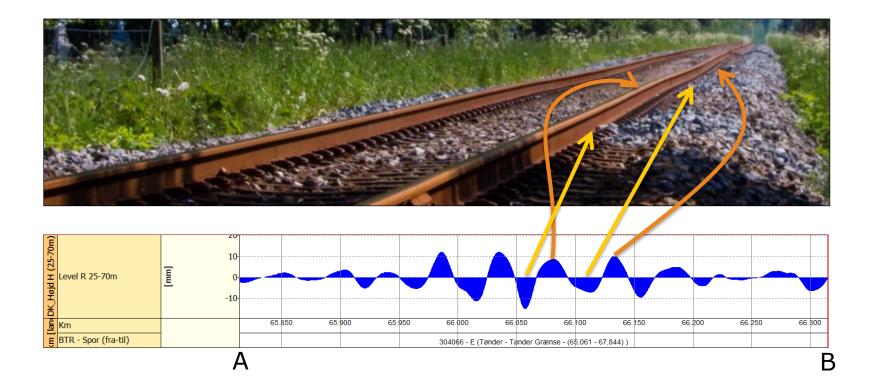
An asset can be many things...



"My" assets are railway tracks – in all kinds of shapes

Which is great for running trains from A to B, as a straight line is not always possible...

But analyzing specific issues can better be done using diagrams. This requires that the track gets a *linear* representation



Comparable to making a 3D sphere into a 2D map

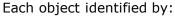
By representing the infrastructure linearly, as a track from one mileage to another, data can be presented on a diagram

Linear asset management in **IRIS**SYS

Components needed to make an effective system

Asset data

- Bridges
- Level crossings
- Curvature
- Etc.


Infrastructure model

- Tracks
- S&Cs
- Line definitions
- Etc.

Measurement data

- Track (geometric, corrugation etc.)
- Rails (ultrasonic, eddy current)
- Ballast (ground penetrating radar)
- OCS (height, zigzag, thickness)

- Line number
- Track/S&C number
- Mileage from/to

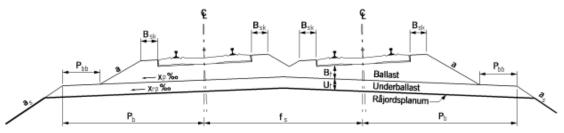
Case study

Strategic renewal analysis

- The track mentioned in the introduction is to be renewed in 2019
 - and the track geometry clearly has a problem, but...
 - \circ ...what causes the problem?
 - $\circ \ \ ...$ what kind of renewal is needed? What is possible?

To figure that out

We need to know something about the assets



Asset data comes from different sources

Some is master data and design regulation

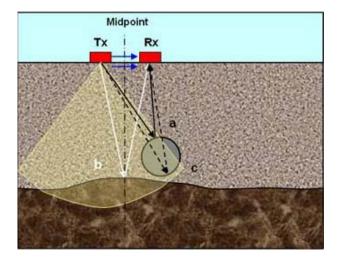
Asset	Needed for	Source
Superstructure	Thickness of rail/sleeper as reference, and demands for layer thicknesses	Master data
Cant	If applicable, there is special demands for layer thicknesses	Master data

Element	V≤160	160 <v≤200< th=""><th>200<v≤250< th=""></v≤250<></th></v≤200<>	200 <v≤250< th=""></v≤250<>
Ballast shoulder width, Bsk	0,40 m	0,55 m	0,50 m
Inclination, a	1,5	1,5	1,5
Ballast thickness, Bt	0,30 m	0,30 m	0,35 m
Subballast thickness, Ut	0,15 m	0,25 m	0,30 m
Base layer width, Pb	3,00 m	3,00 m	3,80 m
Base layer inclination, Xp	40 ‰	40 ‰	40 ‰

Asset data comes from different sources

Some from universal measuring cars

Asset	Needed for	Source
Track geometry & deterioration rate	Unstable track geometry indicates need of ballast cleaning	Measuring car
OCS wire height	Clearance height to OCS wires must be ensured	Measuring car

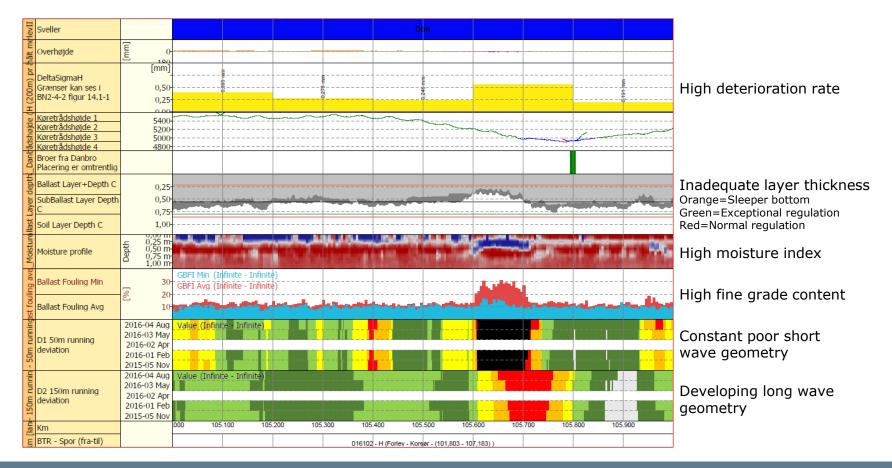


Asset data comes from different sources

And some from ground penetrating radar

Asset	Needed for	Source
(Sub)ballast layer thickness	Design criteria must be obeyed	Ballast drillings GPR measurement
Moisture content	Indicates if there is a drainage problem	GPR measurement
Fine grade content	Fouling limits must be obeyed	GPR measurement

All asset data is combined as linear assets


A huge amount of information presented in so it is easy to read

Sveller			Type of superstructure
Overhøjde	E 0-		Amount of cant
DeltaSigmaH Grænser kan ses i BN2-4-2 figur 14.1-1	[mm] 0,50- 0,25- 0,00		Calculated longitudinal level D1 deterioration rate model Blue=Normal Yellow=Frequent tampings (<3 years)
Køretrådshøjde 1 Køretrådshøjde 2 Køretrådshøjde 3 Køretrådshøjde 4	5400 5200 5000 4800		OCS wire height measurement Green=Normal Blue=Exceeded alert limit Red=Too low
Broer fra Danbro Placering er omtrentlig			Approximate position of bridges
Ballast Layer+Depth C SubBallast Layer Depth C C Soil Layer Depth C	0,25- 0,50- 0,75- 1,00-		GPR measured layer thicknesses (calibrated by drillings, 1/km) Light grey=Ballast Dark grey=Subballast Orange=Sleeper bottom Green=Exceptional regulation Red=Normal regulation
Moisture profile	0,25 m 0,50 m 0,50 m 0,75 m 1,00 m		GPR relative moisture index Blue=Wet Red=Dry
Ballast Fouling Min Ballast Fouling Avg	30- 8 20- 10-	GBFI Min (Irlfinite - Infinite) GBFI Avg (Irlfinite - Infinite)	GPR fine grade content (calibrated by sieve tests) Blue=Minimum Red=Dry
D1 50m running deviation	2016-04 Aug 2016-03 May 2016-02 Apr 2016-01 Feb 2015-05 Nov	Value (Infinite - Infinite)	UFM measured longitudinal level D1 $\sigma_{\rm 50m}$ over time Green=Low Yellow=Intermediate Red=High Black=Critical
D2 150m running deviation	2016-03 May 2016-02 Apr 2016-01 Feb 2015-05 Nov	Value (Infinite - Infinite)	UFM measured longitudinal level D2 σ_{150m} over time Green=Low Yellow=Intermediate Red=High Black=Critical
E BTR - Spor (fra-til)	-	000 105.200 105.200 10	-

If we look at the specific track in question

Then a lot of pieces falls in place in the puzzle

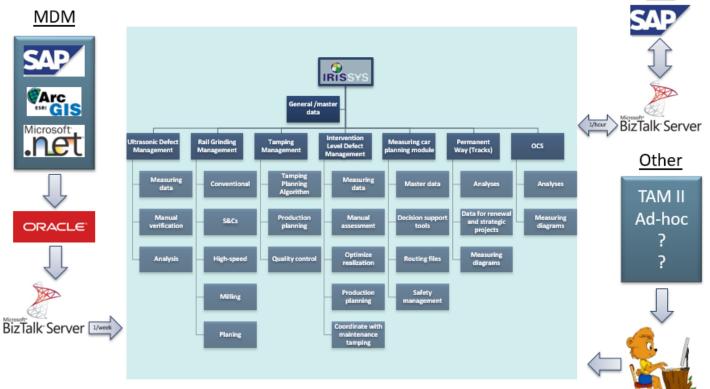
What to do about it?

Let's take a closer look at the information

levII	Sveller		Dhn
hålt me	Overhøjde	[m 0-	
(H (200m) pr â	DeltaSigmaH Grænser kan ses i BN2-4-2 figur 14.1-1	[mm] 0,50- 0,25-	016102 - H 105,778 Height: 4919 mm Must be: 5100 mm
Dantrådshøjde (Køretrådshøjde 1 Køretrådshøjde 2 Køretrådshøjde 3 Køretrådshøjde 4 Broer fra Danbro Placering er omtrentlig	5400- 5200- 5000- 4800-	016102 - H 105,654 Sleeper: Dbn (height=0,222 m) Ballast depth center: 0,28 m (thickness=5,8 cm) Subballast depth center: 0,41 m (thickness=13 cm) Standard: Ballast=30 cm Subballast=25 cm Ballast depth center: 0,57 m (thickness=35 cm)
ayer depth	Ballast Layer+Depth C SubBallast Layer Depth C	0,25- 0,50- 0,75-	Subballast depth center: 0,66 m (thickness=9 cm) Standard: Ballast=30 cm Subballast=25 cm
Ilast L	Soil Layer Depth C	1,00-	
Moisture	Moisture profile	0,25 m 0,25 m 0,50 m 0,75 m 1,00 m	
ing ave	Ballast Fouling Min	30- 20-	016102 - H 105,658
ast fouling	Ballast Fouling Avg	20- 10- 10-	Avg 30,95001 %
- 50m runningst	D1 50m running deviation	2016-04 Aug 2016-03 May 2016-02 Apr 2016-01 Feb 2015-05 Nov	016102 - H 105,626
- 150m runnin	D2 150m running deviation	2016-04 Aug 2016-03 May 2016-02 Apr 2016-01 Feb 2015-05 Nov	Højd C D1 - 50m running deviation Stddev: 2,88
km [lan	Km BTR - Spor (fra-til)		105.400 105.500 105.600 105.700 105.800 105.900 016102 - H (Forlev - Korsør - (101,803 - 107,183))

- The track geometry is unstable indicating need of ballast cleaning
- There is a bridge which causes the OCS wire height to be lowered
- At present it is 180 mm lower than it should be at renewal
- Just under the bridge there is sufficient ballast, while 16 cm of sub ballast is missing
- As there is no room upwards, this can only be solved by making a new track bed

Conclusion


To summarize

- Use of linear assets is useful for:
 - Making it possible to overview huge amount of information in a single view
 - Combining data from different sources
- One example is use of master data, track geometry-, OCSand GPR-data for determining need of track bed renewal
- This combined use of data makes it possible to make smarter renewal planning – and get more railway for the money

If there is time... then I have a commercial

If any of you is interested in knowledge sharing, please do not hesitate to contact me. Here is an overview of our linear asset management software and interfaces:

