



#### IMPROVING THE UTILIZATION OF BOGIE PERFORMANCE DETECTORS

Naples, 22<sup>nd</sup> November 2016





### **Evolution of Wayside**

**1940-50's –** First "wayside" systems – basic hot box and dragging-equipment detectors

**1960-80's** – Radio transmission of hotbox and dragging-equipment results – Early testing of RFID tagging solutions, and then creation of AEI standard

**1990's –** More complex wayside condition monitoring systems enter the market

- Bogie Performance Detectors for Geometry/Stability (TBOGI), Wheel Profile Systems, Acoustic Bearing Detectors, and Wheel Impact Load Detectors
- 2000's Move from basic "go / no go" to more centralized data and trending tools
  - Wayside "supersites" start becoming cohesive with more shared infrastructure
- **2010's Improving data analysis and composite thresholds** 
  - Extending the functionality of wayside systems







#### What is happening at the Wheel-Rail Interface

**Reveal Causality** 

#### Identify where money is being lost

**Targeted Action** 

Achieve the goals of wayside monitoring



Excerpt from Bladon, K., Rennison, D., Izbinsky, G., Tracy, R. and Bladon, T., 2004, Predictive Condition Monitoring of Railway Rolling Stock. In: CORE 2004: New Horizons for Rail. Darwin, N.T.: Railway Technical Society of Australasia (RTSA), 22.1-22.12.





#### How were early Bogie Performance Detectors used to evaluate bogies, and what were the challenges?





# **Early BPMs**

Forces on tangent and curve are variable depending on speed, wagon length, load, direction, and friction coefficient.

Strain gauges can sense vertical and lateral forces, but only a very limited view of longitudinal or spin forces.

Creep and Creep Force are not directly related: low forces could be very good or very bad.







7

# **Early BPMs**

Forces on tangent and curve are variable depending on speed, wagon length, load, direction, and friction coefficient.

Strain gauges can sense vertical and lateral forces, but only a very limited view of longitudinal or spin forces.

Creep and Creep Force are not directly related: low forces could be very good or very bad.







# **Early BPMs**

Forces on tangent and curve are variable depending on speed, wagon length, load, direction, and friction coefficient.

Strain gauges can sense vertical and lateral forces, but only a very limited view of longitudinal or spin forces.

Creep and Creep Force are not directly related: low forces could be very good or very bad.







#### How do modern BPDs evaluate the wheel-rail interface itself, and what have been the experiences in improving the utilisation of this information?





## The TBOGI System















### Effects of Defective Tracking Behaviour Angle-of-Attack



#### **Above Rail**

- Material flows on the wheel
- Hollow wheel wear
- Specific root causes for each type of AoA defect wheelset vs bogie

#### **Below Rail**

- Intermittent crown wear as lateral material flows, particularly in curves
- Deformation discontinuities form as corrugations or material flow
- Lateral fatigue cracking and that can lead to rail breaks









### Effects of Defective Tracking Behaviour Tracking Position



#### **Above Rail**

- Material flows on the wheel
- Flange wheel wear
- Specific root causes for each type of TP defect wheelset vs bogie



- Head checking / gauge corner cracking
- Shelling
- Longitudinal fatigue cracking
- Flow of flash-butt material on the gauge corner of the rail









#### Effects of Defective Tracking Behaviour Hunting



#### **Above and Below Rail**

- Combination of previous two slides, plus repeated flange
  impacts against the rail if severe hunting
- Accelerated degradation of whole system, both above rail and below rail
- Increased flange climb and derailment risk
- Propensity for spin creep and 'scrubbing' action against the rail







Izbinsky G., Sirois G., Liu Y., D'Aoust D., "Monitoring bogie performance on straight track. Part 1. Wheel set tracking position". The 7th World Congress on Railway Research, Montreal, June 2006





## **Targeted**



Not to scale











## **Targeted**











## Intelligence













**Tracking Error Case Study 2** 











## Intelligence















Trail ax:154 AOLT:-0.8 TPT:-20.8 SHIFT:0 ROT:0 Copyright © 2009 Wayside Inspection Devices





## **Accelerated Wear**











#### Hunting Case Study 1



















#### Hunting Case Study 2

























Most common defects in turnouts are accumulated plastic deformation (lipping), wear, RCF, and rail head checking

Turnout when leading bogie steers one way and trailing bogie steers the other way



1



# Squeal / Noise

|   | Station     |
|---|-------------|
|   | TBOGI + Mic |
| 1 | Lubricator  |
| 2 | To Sydney   |

The results show that all of the most severe wheel squeal events were generated by freight vehicles and that nearly all of these were associated with abnormally high AoA.

This shows that the curving performance of wagons plays an important role in squeal.

*Transport for New South Wales (NSW), Australia. World Congress on Railway Research, Sydney, 2013* 

The likelihood of squeal increases if AoA exceeds 10 mrad

Large AoAs (much higher than 10 mrad) frequently from freight trains and were responsible for high level squeal





# **Squeal / Noise**

#### 40 120 Angle of attack (mrad) Tracking Position (mm) Noise level (dBA) 20 110 Martin and Stranger Stranger Stranger Stranger 0 100 -20 (b)80 -40 201 1 21 41 61 81 101 121 141 161 181 40 120 Angle of Attack (mrad) Tracking Position (mm) Noise level (dBA) 20 110 25% 0 20% -20 15% (c -40 80 10% 3.2% 91 1 11 21 31 41 51 61 71 81 101 111 121 131 141 151 5% 0.6% Axle Count 0% 10-20 Angle of Attack Tracking Position <10 Noise



Wheel squeal ⇔ AoA

Flanging noise  $\Leftrightarrow$  TP

#### Table 2 Normalised squeal occurrence rates

|           | Squeal Category | Squeal or | Squeal occurrence rate |  |
|-----------|-----------------|-----------|------------------------|--|
|           |                 | Per train | Per day                |  |
| Passenger | >120            | 0.00%     | 0                      |  |
|           | 110-120         | 1.02%     | 1                      |  |
|           | 100-110         | 15.15%    | 18                     |  |
| Freight   | >120            | 35.98%    | 4                      |  |
|           | 110-120         | 46.95%    | 5                      |  |
|           | 100-110         | 99.39%    | 10                     |  |



Figure 3 Freight train squeal occurrence rate per AoA category





## **Squeal / Noise**







## **Improving the Wheel-Rail Interface**

## **Derailment Prevention**





**Improving the Wheel-Rail Interface** 

#### **Above Rail**













Fig. 7. Effects of the angle of attack on the life span before flaking.



Fig. 13. The effect of the angle of attack on wear.





## **Derailment Prevention**



Excerpts from Bladon, P., K. Bowling, H. Braren, J. Deslauriers and D. D'Aoust 2015 "The Challenges of Integrating Novel Wayside Rolling Stock Monitoring Technologies, A Case Study." In, Proceedings of 2015 International Heavy Haul Conference, Perth. International Heavy Haul Association (IHHA), 417-426.





## **Derailment Prevention**









## Where to now

#### Improving the utilization of modern Bogie Performance Detectors

Ongoing development of granular composite rules - more targeted alarms

Ultimately:

- Virtual roll-by the trains before they arrive
- Integration of wayside data with track data know not to run certain bogies on certain track

