## "NEW TRANSPORT ARRANGEMENTS USING ICT"

```
Kazutaka Itou \(1^{1}\), Itaru Otsuchibashi \(2^{2}\), Rieko Otsuka \(3^{3}\)
\({ }^{1}\) East Japan Railway Co. Saitama.Japan
\({ }^{2}\) Hitachi Ltd. Tokyo.Japan
\({ }^{3}\) Hitachi Ltd. Tokyo.Japan
*sakairi@jreast.co.jp*
```

Sei Sakairi
East Japan Railway Company

## Introduction

## Transport accident occurs



Now decision based only on delay information and experience of past accidents

Dispatcher selects which train to cancel or adjust


Developed a visualizing system for the dispatcher to quantitatively grasp congestion and delay of trains in real time and similar function for smartphone app to passengers.
Moreover, we studied methods to quantify congestion status of stations.

## Introduction

## Advantage

What effect can we expect by visualizing congestion?
(1) Dispatcher can operate in accordance with the congestion of the train.

(2) Provide a congestion information to customers, so that they can select a less crowded train and alleviate congestion.

Alleviates congestion and prevents further train delays!

## Data Process Flow



We use data on train location, delay time, and passenger volume in this study. This data is obtained from an existing system, namely a traffic control system (ATOS) and train data collection server.
Train has sensors which measure vehicle weight and by using this it is possible to calculate the approximate number of passengers riding on the train.

## Forecast of Station Congestion

Flow of Station Congestion Forecasting Past data


## Real-time delay and congestion data



## Forecast of Station Congestion

$$
C=P_{\text {enter }}+P_{\text {exit }}
$$

(C) • • • Congestion of the station area

It is sum of enter and exit number of visitors.

$$
Y_{t i}=F\left(x j_{t i-1}\right)
$$

Made a station congestion prediction model by using the Random Forest, a machine learning method.
Objective variable
(Y) • • • Sum of entering and exiting people at the target station
(ti) • • . Time range
Explanatory variable
(xj) • . - Total value such as time of day, number of trains, number of passengers
Estimate the station congestion ( Y ) of the next time range using the explanatory variables ( xj ) of the time range ( $\mathrm{ti}-1$ ).

## Station Congestion Prediction

## Results of verification

(1)The forecast result of a typical day shows a trend similar to the actual value. (Mean absolute error rate: 12.6\%)
(2) In particular holidays, the forecast results of a day in which an accident occurs deviates greatly from the actual value. (Mean absolute error rate: 20.7\%).



This is due to the lack of learning data from holiday and accident days, which we need to address in the future.

## Prototype System for Train Dispatchers

Concept of this system:
Show comprehensively the status of congestion both in trains and stations.
Functions :
The prototype enables users to access both real-time data and historical data. In the past-display mode you can select the date and download the data you want to see and display it fast-forward.

Zoom-out Display Focuses on crowded trains when displaying entire system.



East Japan Railway Company
www.jreast.com.jp

## Prototype System for Train Dispatchers

## Station Congestion

（1）Displays the predicted value at units of 15 minutes from the current time up to 60 minutes away．
（2）Displays ratio threshold of resident number of people in the text．
（3）Changes the size of o icons．Red color icon is greater than threshold value，green is less than threshold value．
（4）With＂route unit view＂stations exceeding threshold displayed in red．

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 秋蕒原 | 翟在～15彷复 | ～30分摠 | $\sim 45$ 分芢 | ～60分㠅 |
|  | $\bullet$ | ） | $\bullet$ | $\bullet$ |
|  | 3，944 | $10,397$ | $\begin{aligned} & \text { 4,453 } \\ & 4354 \end{aligned}$ | $\begin{aligned} & 4,494 \\ & 439 \end{aligned}$ |
| 上雺 | 翟在～15分集 | $\sim 30$ 分集 | $\sim 45$ 分㠅 | $\sim 60$ 分㪇 |
|  | － | $\bullet$ | － | － |
|  | $\begin{gathered} 3,810 \\ 53 \% \\ \hline \end{gathered}$ | $\begin{aligned} & 3,998 \\ & 56 \% \end{aligned}$ | $\begin{aligned} & 3,837 \\ & 5454 \end{aligned}$ | 4，583 |
| 大宮 | 翟在 $\sim 15$ 分复 | $\sim 30$ 分夜 | $\sim 45$ 分夜 | $\sim 60$ 分复 |
|  | － | － | － | $\bullet$ |
|  | $\begin{aligned} & 3,782 \\ & 3,58 \% \end{aligned}$ | $\begin{aligned} & 4,329 \\ & 402 \% \end{aligned}$ | $\begin{aligned} & 3,829 \\ & 355 \% \end{aligned}$ | $\begin{aligned} & 4,338 \\ & 40 \% \end{aligned}$ |
| 蒲田 | 現在 $\sim 15$ 分复 | $\sim 30$ 分复 | $\sim 45$ 分复 | $\sim 60$ 分复 |
|  | － | － | － | － |
|  | $1,890$ | $1,731$ | $2,368$ | 1，861 |
| 鋾糹町 | 珼在 $\sim 15$ 分复 | $\sim 30$ 分复 | $\sim 45$ 分复 | ～60分隹 |
|  | － | － | － | － |
|  | 1，689 $32 \%$ | $\begin{aligned} & 1,938 \\ & 37 \% \end{aligned}$ | $\begin{aligned} & 1,991 \\ & 36 \% \end{aligned}$ | $\begin{aligned} & 1,839 \\ & 35 \% \end{aligned}$ |


※ Threshold of the station is the average value of the daily per－maximum number of people entering and exiting．

## Prototype System for Train Dispatchers

From Oct. 13 ,2015
Trial use in Tokyo Train Control Center

## Prototype Smartphone App for Passengers

## Display method

View congestion situation in the passenger icon. Icon changes as congestion rate increases.
(1) Congestion rate <75\%:

Displays blue single person icon (2) $75 \% \leqq$ Congestion rate $<150 \%$ :

Displays orange two person icon (3) Congestion rate $\geqq 150 \%$ :

Displays red three person icon

Train Congestion



Dec 15,2015 ~Jan.19, 2016
Monitor survey of about 150 people

## Prototype Smartphone App for Passengers

## Survey result (Excerpt)

(1) Did you change trains after checking the congestion?

(2) Was it good to change trains?

[Opinions from the monitor]

- Easier to find a seat after changing trains.
- It was comfortable to ride in uncrowded train.
- Knowing the delay, waited for next train which was uncrowded.


## For practical use

Expansion of function Train congestion
Additional kilometer display


## Station congestion

Forecasting each area in station


Practical use this system in next spring !


Thank you for your attention

