

Brakeblock detection @ INFRABEL

Ward Verhelst, ing. N&V, INFRABEL

Intelligent Rail Summit Naples 2016 22/11/2016

Content

- Infrabel: IM of Belgian Railways
- Brake block effect on Rolling Noise
- WIM introduction at Infrabel
- TNO PBA software
- Advantage combining WIM +PBA
- Site requirements
- Validation
- Conclusion

Builds, **renovates** and **maintains** the rail network

→ Infrabel invests around €1 billion annually to manage, renovate and develop the Belgian railway infrastructure

→ 12,464 employees (2014)

INFR/ABEL

A major player in high-speed transport: Belgium is the first European country to have completed its high-speed network from border to border

→ It takes less than 2 hours to travel from Brussels to Amsterdam, Cologne, Paris or London

A major player in **sustainable**, **efficient mobility**

→ The number of passengers using the Belgian network grew by approx. 50% between 2000 and 2014

Brake block /rolling noise Prediction for a freight wheel on track with medium stiffness rail pads.

Type of Influence

Cast iron blocks

LL/K blocks

Brake block effect on PERMANENT N&V emission >10 dB->15 dB

Monitoring N&V @ Infrabel

Infrastructure

EM130 measurement train + N&V sensors, fully automatic acquisition, post processing, data transfer (since 2012)

Rolling stock

WIM systems + Noise & vibration emission monitoring:

- Tender 2011
- 2 suppliers tested in 2014
- 15 double track systems to be installed 2015-2
- By end 2017,7 systems operational, including

Automatic detection of type of brake block

ROLLING STOCK MONITORING

Initial project requirements (2009)

- W.I.M. installations for: axle load weighting, Load distribution over wheels/axles,..., dynamic loads (impacts, wheelflats,..)
- Installation over a 3 year period on the entire Infrabel network
- cover more than 90% of the complete rolling stock: 15 installations on double track = 30 measurement positions

Additional demand

- N&V measurement will be included to build up a database with train TEL level - ISO 3095 + raw N&V data
- Post processing with TNO-PBA software will lead to dBase with acoustic quality of rolling stock

2011: WIM: Technical specification published

- <30 ton /axle
- Available after 30s
- 2400 axle/hour
- +/- 5% trainweight
- 10% axle loads (30-120km/h)
- Timestamp train identification
- Total trainweight + individual detection of vehicle, axle, wheel parameters
- Min. 7 meter measurement area
- TEL (transit exposure level) volgens ISO 3095:2005(E)+ raw railacceleration+microphone data
- One year evaluation, 4 calibration tests planned

2013: November installation 2 selected system

2014: 4 tests with "calibration train" with

- Know axle loads
- Know wheel faults
- Direct measured roughness

- Railacceleration
- Noise emission ISO3095

INFR/ABEL

L75: De Pinte

TNO - PBA software

Figure 1.2: Schematic overview of the analysis procedure with a typical range roughness and total transfer function can be used to calculate the total sound a given train speed.

Single value indicator for roughness

 $L_{\lambda CA}$ (Harmonoise project (2003)

$$L_{\lambda CA} = 10 \log \sum_{\lambda=20 \text{ cm}}^{0.4 \text{ cm}} 10^{\frac{1}{10} \left\{ R(\lambda) + \Lambda(\lambda) + C(\lambda) + A(f(\lambda, v)) \right\}}$$

Knowing position of wheel in timeframe is important for quality of results

Figure 3.1 Vertical acceleration measurement during four wheel passages.

0 - 4 dB	"smooth rail"
$5-7\mathrm{dB}$	"ground rail" (approx. 1 month after grinding)
7 – 9 dB	average rail roughness (average of 30 Dutch sites [6])
10 –11 dB	"smooth wheels" (unbraked, disc-braked, or sinter
blocks ([6]);	
12 dB	average rail roughness of the Dutch network in
calculation s	scheme [15];
14 –17 dB	corrugated rail;
18 –20 dB	"rough wheels" (cast-iron blocks, disc+additional cast
iron blocks)	
25 –28 dB	severely corrugated track

Advantage of combining WIM with PBA

- PBA needs exact axle passage time on accelerometer
- WIM systems can provide this info with high precision
- PBA analysis can be automized
- Hardware, software, power, ICT,... and can be combined
- Presence of composite brake block can be linked to trainnumber, operator,.....

(Most important) Requirements for WIM / PBA site

- Same track design (rail, railpads, fixation) for all monitoring sites
- Smooth and monitored rails (below ISO3095 limits) due to extraction of the combined Wheel/rail roughness
- High and stable TDR (track decay rate), requires knowledge about railpads, railfixation, influence temperature..
- High damping, stiff, temperature independent railpads

Intermediate results

Validation of the system

- Visual
 - by high speed camera brake block recognition
 - First test in october 2014
- By combining knowledge of direct and indirect measured wheel roughness (early 2015)
 - Testtrain with known roughness
 - Direct measurement of a whole freight train

Visual validation: standstill

Cast iron brake block

Composite brake block

Visual validation
running train:
tilled to 1.16754
running train:
figh speed
camera

Example of analysis of a freight train

Example of analysis of some other freight trains

10

20

axle#

40

50

60

70

30

0 **CALCULATION**:

Single value indicator for roughness

10: cast iron 0 : composite

15: not recognised on

camera

Conclusions

- Detection of type of brake block, axle by axle in real-time is possible
- Implementation an counting of axles on Belgian railway network is ongoing
- Retrofit, stimulated by E.C. (replacement of cast iron brake block by composite break blacks) can be followed closely and evaluated in detail (e.g. Operators, investments, real emission at 7.5m)
- Future NDTAC on real measured data
- Check of new composite blocks entering the market